Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ben-Lai Wu, You-Fu Zhou, Lei Han and Mao-Chun Hong*

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian 350002, People's Republic of China

Correspondence e-mail: hmc@fjirsm.ac.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.009 Å R factor = 0.068 wR factor = 0.138 Data-to-parameter ratio = 13.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2004 International Union of Crystallography

Printed in Great Britain - all rights reserved

Dichloro[3,3'-bis(ethoxycarbonyl)-2,2'-bipyridyl- $\kappa^2 N, N'$]copper(II)

In the title compound, $[CuCl_2(C_{16}H_{16}N_2O_4)]$, which crystallizes in the monoclinic space group C2/c, molecules are located on twofold rotation axes passing through the Cu centers and bisecting the bipyridyl ligands. They are interconnected by weak $C-H\cdots O$ and $C-H\cdots Cl$ interactions to form a twodimensional network which stacks along the *c* axis. Received 6 August 2004 Accepted 31 August 2004 Online 4 September 2004

Comment

Binicotinic acid, being a photoactive and multidentate ligand, has attracted much attention recently (Perkovic, 2000; Wu *et al.*, 2004). Moreover, the interesting emission properties of a platinum(II) complex with 3,3'-bis(methoxycarbonyl)-2,2'bipyridyl has been reported by Miskowski *et al.* (1993). However, coordination compounds involving 3,3'-bis(ethoxycarbonyl)-2,2'-bipyridyl (DCEB) have not been exploited yet. We report here the first metal–DCEB coordination complex, [CuCl₂(DCEB)], (I), prepared from the reaction of CuCl₂·2H₂O and DCEB in CH₃CN.

X-ray diffraction analysis shows that (I) crystallizes in monoclinic space group C2/c. The local coordination geometry around each Cu^{II} center can be described as a severely distorted square (Fig. 1) in which each Cu^{II} center is coordinated by two N atoms from the 2,2'-pyridyl moiety of DCEB and two terminal chloride anions. The main deviation from the plane formed by atoms N1, Cl1, Cl1ⁱ, N1ⁱ (symmetry code as in Table 1) and Cu1 originates from its *trans* angles [146.67 (15)° for N1-Cu1-Cl1ⁱ and N1ⁱ-Cu1-Cl1], notably less than 180°, which leads to a coordination geometry close to that of a compressed tetrahedron. The dihedral angle between the two pyridine rings in (I) is 31.2 (5)°. The molecules are linked by weak C-H···O and C-H···Cl interactions to form a two-dimensional network which stacks along the *c* axis in the crystal (Fig. 2).

Acta Cryst. (2004). E60, m1365–m1366 DOI: 10.1107/S1600536804021257 Wu, Zhou, Han and Hong • [CuCl₂(C₁₆H₁₆N₂O₄)] m1365

Figure 1

Perspective view of (I) with the atom-numbering scheme. Displacement ellipsoids are shown at the 30% probability level. The suffix A corresponds to symmetry code (i) in Table 1.

Experimental

The organic ligand DCEB was prepared by substitution of methanol with ethanol in the literature method of Dholakia *et al.* (1985). A mixture of DCEB (30 mg, 0.1 mmol), CuCl₂.2H₂O (17 mg, 0.1 mmol) and CH₃CN (5 ml) was vigorously stirred for about 1 h to give a green solution. Slow evaporation of the resultant solution for two weeks produced green plate-like crystals suitable for X-ray diffraction.

Crystal data

$[CuCl_2(C_{16}H_{16}N_2O_4)]$	$D_x = 1.670 \text{ Mg m}^{-3}$
$M_r = 434.75$	Mo $K\alpha$ radiation
Monoclinic, $C2/c$	Cell parameters from 2620
a = 11.3605 (16) Å	reflections
b = 11.2772 (15) Å	$\theta = 2.6-25.1^{\circ}$
c = 13.5039 (19) Å	$\mu = 1.60 \text{ mm}^{-1}$
$\beta = 91.269(3)^{\circ}$	T = 293 (2) K
V = 1729.6 (4) Å ³	Plate, green
Z = 4	$0.24 \times 0.18 \times 0.06 \text{ mm}$
Data collection	
Bruker SMART CCD	1523 independent reflections
diffractometer	1238 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.035$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.1^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -10 \rightarrow 13$
$T_{\rm min} = 0.673, T_{\rm max} = 0.909$	$k = -13 \rightarrow 11$
2620 measured reflections	$l = -13 \rightarrow 16$

Figure 2

Packing diagram of (I), viewed along the c axis. Hydrogen-bond interactions are indicated by dashed lines.

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.068$	$w = 1/[\sigma^2(F_o^2) + 18.8764P]$
$wR(F^2) = 0.138$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.23	$(\Delta/\sigma)_{\rm max} < 0.001$
1523 reflections	$\Delta \rho_{\rm max} = 0.51 \ {\rm e} \ {\rm A}^{-3}$
115 parameters	$\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Cu1-N1	2.009 (5)	Cu1-Cl1	2.2082 (18)
N1 ⁱ -Cu1-N1 N1 ⁱ -Cu1-Cl1	80.3 (3) 146.67 (15)	N1-Cu1-Cl1 Cl1-Cu1-Cl1 ⁱ	97.01 (15) 102.45 (10)
Symmetry code: (i) $-x$,	$y, \frac{3}{2} - z.$. ,

H-atoms were positioned geometrically (C-H = 0.95–0.99 Å) and allowed to ride on their respective parent atoms, with $U_{iso}(H) = 1.2$ or 1.5 times $U_{eq}(C)$.

Data collection: *SMART* (Siemens, 1994); cell refinement: *SAINT* (Siemens, 1994); data reduction: *SAINT* and *SHELXTL* (Sheldrick, 1997); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Natural Science Foundation of China and the Natural Science Foundation of Fujian Province.

References

Dholakia, S., Gillard, R. D. & Swimmer, F. L. (1985). Polyhedron, 14, 791–795. Miskowski, V. W., Houlding, V. H., Che, C. M. & Wang, Y. (1993). Inorg. Chem. 32, 2518–2514.

Perkovic, M. W. (2000). Inorg. Chem. 39, 4962-4968.

- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1994). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Wu, B., Yuan, D., Jiang, F., Wang, R., Han, L., Zhou, Y. & Hong, M. (2004). *Eur. J. Inorg. Chem.* pp. 2695–2700.